| Аннотация | В простейшем случае уравнение срочной структуры для цены дериватива u(x,t) имеет вид
ди/дt + a(x,t)=a(x,t)-d2u/dx2–xu,
где х - краткосрочная процентная ставка. Уравнением конвекции называется уравнение с такой же левой частью, как и у приведенного уравнения, и с нулевой правой частью. При численном решении уравнения срочной структуры разностными методами аппроксимация производной ди/дх центральными разностями стала широко распространенным приемом. Однако хорошо известно, что при построении разностных схем для уравнения конвекции при аппроксимации производной ди/дх нельзя использовать центральные разности, так как необходимо учитывать направление характеристик этого уравнения. То есть разностная схема в той или иной степени должна обладать свойством противопоточности. В настоящей работе для уравнения срочной структуры сравниваются разностная схема с центральными разностями и другая разностная схема, называемая смешанной, которая охватывает и случай доминирующей конвекции. Приводится пример расчета, когда точность смешанной разностной схемы более чем в десять раз выше, чем у разностной схемы с центральными разностями. |