Статья "Квантильный XGBoost и SHAP в построении и объяснен..."

Наименование статьиКвантильный XGBoost и SHAP в построении и объяснении прогнозных моделей для AI-токенов
Страницы111-125
АннотацияВ статье представлена разработка модели и методологии прогнозирования логарифмических доходностей (логдоходностей) нового класса активов - AI (Artificial Intelligence) токенов. Для получения прогнозов 0,9-, 0,5- и 0,1-квантилей на один день вперед предлагается применять квантильные модели XGBoost, представляющие собой ансамбль, основанный на градиентном бустинге регрессионных деревьев. Квантильные модели имеют преимущество в прогнозировании перед традиционно используемыми регрессионными моделями, так как позволяют давать оценку не только для точечного прогноза, но и для его доверительного интервала, оставаясь при этом устойчивыми к выбросам. Это особенно важно при формировании прогнозов биржевых характеристик криптовалют, которые известны высокой волатильностью. Помимо прогнозирования, в исследовании проводится постпрогнозный анализ с применением метода SHAP (Shapley additive explanations), который позволяет интерпретировать модель XGBoost, раскрывая ключевые факторы, являющиеся важными для формирования прогнозов логдоходностей AI-токенов. По результатам анализа важности признаков с помощью SHAP выявлено значительное влияние биржевых характеристик AI-акций, сентимента инвесторов рынка криптовалют, сезонных колебаний, а также признаков, связанных с экосистемой блокчейн (Blockchain). В работе обсуждаются и корректируются недостатки современных подходов прогнозирования и постпрогнозного анализа временных рядов в целом. Полученные результаты, помимо академического интереса, являются релевантными для частных инвесторов, риск-менеджеров, компаний и регуляторов.
Ключевые словапрогнозирование, квантильная регрессия, AI-токены, XGBoost, криптовалюты, SHAP
ЖурналЭкономика и математические методы
Номер выпуска4
Автор(ы)Кучеров И. И.