Статья "Прогнозирование инфляции с помощью методов машинно..."

Наименование статьиПрогнозирование инфляции с помощью методов машинного обучения
Страницы42
АннотацияПрогнозирование инфляции является важной практической задачей. В данной статье предложено решение этой задачи для России с помощью нескольких базовых методов машинного обучения: LASSO, Ridge, Elastic Net, случайный лес и бустинг. Несмотря на то что эти методы были разработаны еще к началу 2000-х гг., в профессиональной литературе, связанной с прогнозированием инфляции вообще и российской инфляции в частности, долгое время они оставались практически незамеченными. Данная работа – одна из первых попыток применения некоторых методов машинного обучения к прогнозированию инфляции в России. По результатам эмпирического исследования делается вывод о том, что модель случайного леса и модель бустинга как минимум не хуже предсказывают инфляцию, чем более традиционные модели, такие как случайное блуждание и авторегрессия. Главным результатом данной работы является подтверждение возможности более точного прогнозирования инфляции в России с помощью методов машинного обучения.
Ключевые словапрогноз инфляции, машинное обучение, бустинг, случайный лес
ЖурналДеньги и кредит
Номер выпуска4
Автор(ы)Байбуза И.