| Аннотация | Статья посвящена проблеме поддельных аккаунтов (фейков) в социальных онлайн-сетях и возникающим из-за них искажениям данных о структуре сетевых взаимодействий между пользователями. Фейки создают дополнительный
«шум» в данных, что затрудняет исследование сети как социального пространства. Вмешательство фейков оставляет отпечаток как на структуре сети, так и на ее свойствах. Оценка числа и влияния фейков имеет значение и для формирования выборок из сетей, поскольку анализ полных сетей зачастую невозможен в силу их размеров.
Цель статьи — оценка влияния поддельных аккаунтов на характеристики локальной сети дружбы между пользователями сайта «ВКонтакте» на примере жителей Ижевска. Авторы выделяют ключевые характеристики, по которым можно распознать фейк, и представляют опыт создания на их основе классификатора для
определения того, является ли аккаунт пользователя подлинным или нет. Для создания классификатора был применен алгоритм случайного леса. Сравнение топологии исследуемой сети до и после удаления из нее фейковых аккаунтов демонстрирует, на изменение каких именно сетевых метрик влияет наличие в сети профилей, не являющихся подлинными. Так, было установлено, что по мере удаления фейков наименее интегрированные участники теряют связь с основной
частью сети и происходит рост числа ее компонент. Таким образом, фейки служат
сильными концентраторами связей, распределенными по всей сети, завышая наблюдаемые уровни ассортативности и транзитивности. |